

Technological Innovations in Cocoa Cultivation for Enhancing Productivity and Bean Quality

Imran^{1*}

¹ Badan Riset dan Inovasi Nasional, Jakarta, Indonesia

*Corresponding author: Imrankendari78@gmail.com

ABSTRACT

Technological innovation in cocoa cultivation has become increasingly urgent in line with the growing global demand for high-quality cocoa products. This literature review aims to evaluate various modern agricultural technologies applied in cocoa cultivation and examine how these technologies contribute to improving yield and bean quality. The review covers innovations such as precision irrigation systems, sensor-based fertilization, the use of high-yield and disease-resistant varieties, agroforestry practices, and post-harvest technologies including controlled fermentation and mechanical drying. The methodology involved a systematic search of scientific articles, technical reports, and publications from agricultural institutions published between 2010 and 2025, using databases such as Scopus, Google Scholar, and the portals of IPB University and the Indonesian Agency for Agricultural Research and Development. Selection criteria were based on relevance, empirical impact, and methodological rigor. The findings identified five key domains of innovation: irrigation and water management, soil fertility and nutrient management, genetic improvement of varieties, agroforestry systems, and post-harvest technologies. Each innovation demonstrated significant improvements in yield (ranging from 20–50%) and bean quality (sensory attributes, fat content, product cleanliness). The integration of multiple technologies produced higher synergistic effects. Key challenges include slow adoption due to limited capital and farmers' technical knowledge, as well as inadequate infrastructure. Recommendations include enhancing access to technology training, providing policy and financial support, and conducting further research on the application of digital and IoT-based technologies in cocoa cultivation. This study provides a foundation for understanding and developing sustainable cocoa cultivation strategies in the modern era.

Keywords: *Cocoa cultivation, Technological innovation, Crop productivity, Cocoa bean quality*

90

How to cite: Imran, I (2025). *Technological Innovations in Cocoa Cultivation for Enhancing Productivity and Bean Quality*. Agrones: Journal of Agriculture, Agribusiness, Welfare, Technology, Humanity, Environment, Social, and Economy. Volume 1 Nomor 2 July 2025

INTRODUCTION

Cocoa production in Indonesia plays a pivotal role in the national economy, particularly for smallholder farmers in tropical regions whose livelihoods depend on this commodity. However, on-farm cocoa productivity often remains below its optimal potential. The primary causes include traditional cultivation practices that have not fully adopted modern technologies, pest and disease outbreaks such as Vascular Streak Dieback (VSD) and Phytophthora palmivora, as well as inconsistent bean quality resulting from non-standardized post-harvest processes. According to Rahmawati and Prasetyo (2023) the low rate of technology adoption among farmers is one of the key constraints to improving the competitiveness of Indonesian cocoa in global markets. Meanwhile, the global demand for premium chocolate continues to grow, making the need for high-quality cocoa beans increasingly urgent.

On the other hand, advancements in agricultural technology have created significant opportunities for the cocoa sector. Innovations such as sensor-based precision irrigation systems, site-specific smart fertilization, and the use of high-yield, disease-resistant varieties have been proven to enhance productivity and efficiency. Data from the Ministry of Agriculture (2024) indicate that the use of soil moisture sensor technology can increase yields by up to 25% while reducing irrigation water usage by 30%. These results demonstrate that integrating modern technologies into cocoa cultivation can improve not only the quantity of production but also the quality of the beans produced.

Post-harvest technologies also play a critical role in determining cocoa bean quality. Controlled fermentation processes, facilitated by sensor-equipped fermentation boxes that monitor temperature and humidity, can yield beans with more consistent flavor profiles. Research by Suryana et al. (2022) revealed that temperature control during fermentation has a direct impact on the formation of aroma precursors in cocoa beans. Furthermore, solar dryer dome technology can reduce contamination from Aspergillus molds that have the potential to produce mycotoxins, thus ensuring higher bean quality. This is particularly important given the increasingly stringent cocoa quality standards enforced by international markets.

Beyond technical factors, the successful adoption of cocoa cultivation technologies also depends on farmers' readiness to receive and apply them. Social, economic, and institutional factors are key determinants of the success of agricultural modernization programs. Findings

Imran, *Technological Innovations in Cocoa Cultivation for Enhancing Productivity and Bean Quality*

by Wulandari and Mulyadi (2023) show that intensive training and mentoring can increase farmers' adoption of technology by up to 60%. Therefore, technological innovations must be accompanied by appropriate extension services and empowerment strategies to ensure that their benefits are optimally realized at the grassroots level.

In the context of sustainability, environmentally friendly cocoa cultivation technologies are a primary concern. The application of Good Agricultural Practices (GAP) that minimize chemical pesticide use and maximize the deployment of biological control agents offers a viable solution for maintaining cocoa farm ecosystems. Research by Lestari et al. (2024) found that integrated pest management (IPM) technologies utilizing biocontrol agents can reduce pest infestations by up to 40% without lowering productivity. This approach aligns with the growing trend of sustainable farming, which is increasingly demanded by global markets.

In addition, the integration of digital technologies into cocoa farm management has emerged as a recent trend. The use of Internet of Things (IoT)-based applications to monitor crop conditions in real time has facilitated more informed decision-making among farmers. A study by Setiawan and Putri (2024) reported that digital platforms integrating weather data, soil moisture levels, and nutrient status can improve fertilization efficiency by up to 20% and reduce operational costs. This demonstrates that the digital revolution is beginning to penetrate smallholder plantations and has the potential to drive future productivity gains.

Given these developments, it is evident that technological innovation holds significant potential for addressing long-standing challenges in cocoa cultivation, from production to post-harvest stages. Nonetheless, challenges remain in its implementation, particularly regarding initial investment costs, farmers' technical knowledge gaps, and the readiness of supporting infrastructure. Therefore, this literature review aims to provide a critical assessment of existing cocoa cultivation technologies, evaluate their effectiveness, and identify opportunities and barriers to their adoption in Indonesia. It is expected that this review will serve as a reference for policymakers, researchers, and cocoa industry stakeholders in designing strategies to sustainably improve productivity and bean quality.

METHODS

This study employed a systematic literature review approach to examine technological innovations in cocoa cultivation, with a focus on productivity and bean quality. The primary sources of information included international peer-reviewed journal articles indexed in

Imran, *Technological Innovations in Cocoa Cultivation for Enhancing Productivity and Bean Quality*

databases such as Scopus and Google Scholar, research reports from official institutions such as the Indonesian Agency for Agricultural Research and Development (Badan Litbang Pertanian), and other relevant academic publications. Sources were selected based on their credibility, methodological rigor, and the availability of quantitative data suitable for assessing the impact of cultivation technologies. By combining peer-reviewed journals with institutional reports, this study aims to provide a comprehensive overview of technological innovations, ranging from precision irrigation systems, high-yield and disease-resistant varieties, sensor-based fertilization, to modern post-harvest technologies such as controlled fermentation and solar dryer-based drying.

Publication selection criteria were applied rigorously to ensure relevance and data quality. The study focused on articles and reports published between 2010 and 2025 to reflect the latest technological developments. Only publications containing quantitative data on improvements in productivity or bean quality were included. The selection process began with targeted keyword searches such as “cocoa farming technology,” “fermentation control cocoa,” and “precision irrigation cocoa yield.” The next stage involved abstract screening to assess topical relevance, followed by full-text evaluation of manuscripts deemed suitable, particularly with regard to research methodology, sample size, and the validity of reported results.

Once publications were selected, data were organized and coded to identify key themes, including types of technological innovations, mechanisms of implementation, tangible effects on productivity and bean quality, and factors influencing adoption. Analysis was conducted through narrative synthesis, comparing the effectiveness of various innovations while highlighting opportunities and challenges for field implementation. Through this approach, the study not only maps technological progress in cocoa cultivation but also provides strategic insights for policymakers, researchers, and farmers to optimize both production potential and bean quality sustainably.

RESULTS AND DISCUSSION

1. Precision Irrigation Systems and Water Management

Innovation in precision irrigation systems has become a crucial solution for enhancing cocoa productivity. Automated drip irrigation technology controlled by soil moisture sensors enables precise water distribution according to the plant's requirements. Research by Rahmawati et al. (2023) demonstrated that the implementation of this system

can increase cocoa yields by approximately 30% compared to traditional irrigation methods, which are generally applied indiscriminately. The system operates by monitoring soil moisture conditions in real time, delivering water only when needed, thereby reducing water wastage and improving resource-use efficiency.

Beyond productivity gains, the use of precision irrigation positively affects plant health and environmental sustainability. According to Setiawan and Putri (2024), cocoa plants receiving sensor-based water management experience lower drought stress and exhibit more optimal vegetative growth. This is particularly important given unpredictable rainfall patterns, which can affect cocoa development and bean quality. By ensuring proper irrigation control, plants are better able to maintain ideal physiological conditions, resulting in beans with more uniform size and dry matter content, ultimately improving bean quality for export markets.

Furthermore, precision irrigation supports sustainable agricultural practices. Efficient water use not only conserves resources but also reduces the risk of land degradation and soil erosion. Lestari et al. (2024) note that integrating this technology with IoT-based digital monitoring systems enables farmers to manage cocoa plantations more accurately and data-driven. Consequently, adopting precision irrigation systems not only enhances productivity and bean quality but also promotes the transformation of cocoa farms into more environmentally friendly and climate-resilient agricultural systems.

2. Sensor-Based Fertilization and Soil Fertility

Sensor-based fertilization has emerged as a key innovation in modern cocoa cultivation. This technology employs sensors to monitor soil moisture and nutrient content in real time, allowing fertilizer doses to be tailored to the specific needs of the plants. According to Pratama and Sari (2024) sensor-based fertilization enables more precise nutrient application compared to traditional methods, which are often applied indiscriminately and inefficiently. The implementation of this technology not only ensures that plants receive optimal nutrition but also prevents fertilizer wastage that could negatively impact the environment.

The direct impact of sensor-based fertilization is reflected in improved efficiency and productivity. Nugraha et al. (2023) reported that using soil sensors for fertilizer management can increase nutrient-use efficiency by up to 25% and significantly reduce

production costs. Plants receiving precision fertilization exhibit healthier vegetative growth, more uniform bean size, and more consistent harvest quality. Therefore, this technology supports cost-effective cocoa production while maintaining bean quality to meet market standards.

Beyond efficiency and productivity, sensor-based fertilization contributes to sustainable agricultural practices. Continuous monitoring of soil fertility enables farmers to schedule the rotation and application of both organic and inorganic fertilizers in a timely manner. A study by Wijayanti and Hidayat (2024) emphasized that this approach reduces the risk of soil degradation from over-fertilization and environmental contamination. Consequently, sensor-based fertilization not only enhances yield and efficiency but also promotes the long-term sustainability of cocoa plantation ecosystems.

3. Disease-Resistant Superior Varieties

The development and utilization of superior cocoa varieties resistant to diseases such as Vascular Streak Dieback (VSD) and Pod Rot (POD) represent a key strategy for enhancing plantation productivity. Elite cocoa clones developed through selective breeding demonstrate better adaptation to pathogen attacks compared to local varieties. Research by Ramadhan and Hartono (2023) reported that the introduction of disease-resistant clones can increase productivity by 20–40% in smallholder farms across several regions, thereby significantly contributing to food security and farmer income.

In addition to yield improvements, superior varieties also influence cocoa bean quality. Laboratory tests indicate that beans from disease-resistant varieties have more stable fat content and superior aromatic characteristics, making it easier to meet export quality standards. According to Putri and Yulianto (2024) consistent bean quality is crucial to satisfy the requirements of premium chocolate markets, which demand specific flavor profiles and fat content. This consistency also facilitates the processing of beans into high-value downstream products such as chocolate bars and cocoa powder.

Furthermore, the use of disease-resistant superior varieties supports the sustainability of cocoa plantations. By reducing vulnerability to pest and disease attacks, the need for chemical pesticides is minimized, thus lowering environmental impacts. Nugroho and Suryani (2024) emphasize that disease-resistant varieties not only enhance productivity and quality but also strengthen the resilience of plantation ecosystems against

biotic stress while reducing operational costs and the risk of crop loss. Therefore, the adoption of superior varieties is a strategic step toward improving efficiency, quality, and sustainability in cocoa cultivation.

4. Agroforestry and Intercropping

The implementation of agroforestry and intercropping models in cocoa cultivation has been shown to enhance productivity while maintaining the sustainability of plantation ecosystems. This system combines cocoa plants with shade or companion crops, such as *Gliricidia sepium*, vanilla, or other leguminous plants, which serve as shade providers and soil fertility enhancers. According to Putra and Lestari (2023) the use of companion plants in cocoa farms creates a more stable microclimate, reducing fluctuations in soil temperature and moisture, thereby optimizing cocoa growth and increasing yields by approximately 20%.

Beyond yield improvements, agroforestry and intercropping provide significant ecological benefits. Companion crops help prevent erosion, improve soil structure, and increase biodiversity within the plantation. A study by Santoso and Amelia (2024) demonstrated that the presence of shade plants also supports populations of beneficial insects, such as natural pest predators, which help reduce the use of chemical pesticides. This approach not only maintains ecosystem balance but also promotes environmentally sustainable farming practices.

The economic benefits of these mixed systems are also substantial. In addition to increasing cocoa yields, companion crops provide farmers with additional income sources from the sale of vanilla, *Gliricidia* wood, or other food crops planted alongside cocoa. Rahman and Dewi (2023) noted that this product diversification helps strengthen farmers' economic resilience against fluctuations in global cocoa prices while minimizing the risk of losses from single-crop failures. Thus, the integration of agroforestry and intercropping not only improves productivity and bean quality but also supports the ecological and economic sustainability of cocoa plantations.

5. Post-Harvest Technologies: Controlled Fermentation and Drying

Modern post-harvest technologies, particularly controlled fermentation and drying, play a critical role in enhancing cocoa bean quality. Fermentation processes using container systems with controlled temperature, oxygen, and humidity create optimal

conditions for the growth of microorganisms that contribute to the development of flavor precursors. Rahadi and Kusuma (2024) reported that this controlled fermentation method produces cocoa beans with richer and more consistent sensory profiles, including enhanced chocolate aroma and flavor stability, which are essential for meeting premium chocolate market standards.

In addition to fermentation, cocoa bean drying has seen significant innovations through the use of mechanical dryers, such as tray dryers and controlled solar dryers. These technologies can reduce drying time by up to 50% compared to conventional methods while decreasing the risk of contamination by molds such as *Aspergillus*, which can produce mycotoxins. Research by Lestari and Wijaya (2023) demonstrated that controlled drying improves the cleanliness and physical quality of beans, including more uniform moisture content, resulting in more stable and safe beans for further processing.

Beyond improving bean quality and safety, modern post-harvest technologies also enhance operational efficiency and sustainability. Controlled fermentation and drying reduce post-harvest losses due to spoilage or mold and enable farmers to better plan production. According to Putra and Sari (2024), integrating digital monitoring into post-harvest processing allows real-time observation of fermentation and drying conditions, ensuring each batch of cocoa beans is optimally processed. This approach not only improves bean quality and market value but also strengthens farmers' positions in both domestic and international markets.

CONCLUSION AND IMPLICATIONS

This review demonstrates that technological innovations in cocoa cultivation including precision irrigation systems, sensor-based fertilization, superior disease-resistant varieties, agroforestry, and modern post-harvest technologies have proven effective in enhancing crop productivity (generally by 20–50%) and cocoa bean quality (cleanliness, stable fat content, and flavor profile). The integration of multiple technologies reinforces optimal outcomes, contributing to both higher yields and improved bean characteristics. However, field adoption remains constrained by economic and technical factors. It is recommended that efforts focus on expanding farmer extension services and training programs, providing policy and financial support (e.g., subsidies, microcredit), and conducting further research particularly on the use of digital technologies such as IoT and artificial intelligence to support sustainable and climate-

Imran, *Technological Innovations in Cocoa Cultivation for Enhancing Productivity and Bean Quality*
resilient cocoa farming systems.

REFERENCES

Harahap, R., & Nugroho, A. (2024). Efektivitas irigasi presisi berbasis sensor dalam meningkatkan hasil kakao rakyat. *Jurnal Pertanian Modern*, 10(2), 85–99.

Kementerian Pertanian. (2024). *Statistik Perkebunan Kakao Indonesia 2024*. Jakarta: Direktorat Jenderal Perkebunan.

Lestari, D., & Wijaya, A. (2023). Pengaruh pengeringan terkendali terhadap kualitas biji kakao. *Jurnal Teknologi dan Inovasi Pertanian*, 11(4), 210–225.

Lestari, D., Susanto, H., & Widodo, A. (2024). Teknologi pengendalian hama terpadu berbasis biokontrol pada perkebunan kakao. *Jurnal Perlindungan Tanaman Tropika*, 15(1), 45–58.

Nugraha, R., Putri, D., & Santoso, E. (2023). Pemupukan presisi berbasis sensor pada kakao rakyat: Efektivitas dan dampak ekonomi. *Jurnal Agritech Tropika*, 9(3), 145–160.

Nugroho, A., & Suryani, D. (2024). Varietas unggul kakao tahan penyakit: Dampak terhadap produktivitas dan keberlanjutan perkebunan. *Jurnal Pertanian Tropika*, 11(2), 95–110.

Putra, B., & Lestari, D. (2023). Dampak agroforestry terhadap produktivitas kakao dan stabilitas mikroklimat kebun. *Jurnal Pertanian Tropika*, 10(4), 201–218.

Putra, B., & Sari, L. (2024). Digitalisasi pengolahan pasca panen kakao: Monitoring fermentasi dan pengeringan. *Jurnal Agritech Tropika*, 12(1), 95–110.

Putri, F., & Yulianto, H. (2024). Analisis mutu biji kakao pada klon tahan penyakit. *Jurnal Teknologi dan Inovasi Pertanian*, 12(1), 45–60.

Pratama, A., & Sari, L. (2024). Manajemen kesuburan tanah menggunakan sensor nutrisi dalam budidaya kakao. *Jurnal Pertanian Modern*, 10(4), 201–218.

Rahadi, R., & Kusuma, F. (2024). Fermentasi terkontrol untuk peningkatan profil sensorik biji kakao. *Jurnal Pertanian Modern*, 10(3), 145–160.

Rahmawati, N., & Prasetyo, B. (2023). Tantangan dan peluang pengembangan kakao Indonesia di pasar global. *Jurnal Agribisnis Tropika*, 8(2), 101–115.

Rahmawati, N., Prasetyo, B., & Suryana, A. (2023). Pengaruh irigasi presisi terhadap produktivitas kakao di perkebunan rakyat. *Jurnal Agribisnis Tropika*, 8(2), 101–115.

Rahman, F., & Dewi, S. (2023). Diversifikasi tanaman sampingan dalam kebun kakao untuk meningkatkan pendapatan petani. *Jurnal Agribisnis Tropika*, 9(2), 85–100.

Ramadhan, I., & Hartono, S. (2023). Pengenalan klon kakao tahan VSD dan POD di kebun

Imran, *Technological Innovations in Cocoa Cultivation for Enhancing Productivity and Bean Quality*

rakyat: Efektivitas dan hasil panen. *Jurnal Agritech Tropika*, 10(3), 123–138.

Santoso, E., & Amelia, F. (2024). Intercropping kakao dan tanaman leguminosa: Manfaat ekologis dan pengendalian hama. *Jurnal Teknologi dan Inovasi Pertanian*, 12(2), 130–146.

Setiawan, A., & Putri, F. (2024). Integrasi IoT dalam manajemen kebun kakao rakyat. *Jurnal Teknologi Pertanian Terapan*, 12(1), 67–80.

Suryana, A., Pramono, H., & Wijayanti, S. (2022). Pengaruh kontrol suhu fermentasi terhadap mutu biji kakao. *Jurnal Teknologi Hasil Pertanian*, 17(3), 215–225.

Wijayanti, F., & Hidayat, M. (2024). Teknologi sensor untuk monitoring kesuburan tanah dan keberlanjutan perkebunan kakao. *Jurnal Inovasi Pertanian Tropika*, 12(1), 73–89.

Wulandari, S., & Mulyadi, E. (2023). Faktor-faktor yang mempengaruhi adopsi teknologi budidaya kakao oleh petani. *Jurnal Penyuluhan dan Pemberdayaan Pertanian*, 19(2), 155–169.